onderblok benzine/diesel 2.25
-
Richard78
onderblok benzine/diesel 2.25
raagje,
Is het onderblok van een benzine en een diesel 2.25l gelijk? Mijn oude onderblok heeft een scheur waardoor er koelvloeistof uit stroomt. Nu kan ik aan een benzine blok komen en ik vroeg me af of ik de onderblokken zo kon uitwisselen?
Beide blokken meoten worden gereviseerd maar dat kan een leuk projectje worden nadat de auto rijd met het mil. 2.25D, en natuurlijk leerzaam
Richard78
Is het onderblok van een benzine en een diesel 2.25l gelijk? Mijn oude onderblok heeft een scheur waardoor er koelvloeistof uit stroomt. Nu kan ik aan een benzine blok komen en ik vroeg me af of ik de onderblokken zo kon uitwisselen?
Beide blokken meoten worden gereviseerd maar dat kan een leuk projectje worden nadat de auto rijd met het mil. 2.25D, en natuurlijk leerzaam
Richard78
-
Dennis101
Re: onderblok benzine/diesel 2.25
De cilinderblokken zijn exact gelijk aan elkaar, dus die kun je gebruiken.
Let er wel op dat de krukas de standaard maat moet hebben bij de diesel en niet geslepen mag worden.
Dennis B.
Let er wel op dat de krukas de standaard maat moet hebben bij de diesel en niet geslepen mag worden.
Dennis B.
-
Richard78
Re: onderblok benzine/diesel 2.25
Hoe bedoel je dat de krukas de standaard maat moet hebben?
Richard78
ps, het duurt wel even voordat ik hier aan begin maar alvast voor het geval dat.
Richard78
ps, het duurt wel even voordat ik hier aan begin maar alvast voor het geval dat.
-
Dennis101
Re: onderblok benzine/diesel 2.25
In deze dieselmotor mag nooit een ondermaats krukas gemonteerd worden, terwijl dit bij een benzine versie wel mag.
De reële kans bestaat dat je zonder deze wetenschap een nog fraaie ondermaats krukas uit de benzinemotor gebruikt voor de diesel en dat kan/gaat verkeerd aflopen, vandaar de waarschuwing.
Dennis B
De reële kans bestaat dat je zonder deze wetenschap een nog fraaie ondermaats krukas uit de benzinemotor gebruikt voor de diesel en dat kan/gaat verkeerd aflopen, vandaar de waarschuwing.
Dennis B
-
Richard78
Re: onderblok benzine/diesel 2.25
dankzij jou zal dat dus niet gebeuren!
Bedankt,
Richard78
Bedankt,
Richard78
-
josleurs
Re: onderblok benzine/diesel 2.25
waarom mag er in een diesel geen ondermaatse krukas gebruikt worden?
grt josleurs
grt josleurs
-
Dennis101
Re: onderblok benzine/diesel 2.25
Omdat de standaard maat krukas het al moeilijk genoeg heeft.
De 3x gelagerde 2.25 D is beroemd geworden door regelmatig brekende krukassen, vandaar dat Land Rover slijpen van de krukas niet toestaat. Toen de 5x gelagerde 2.25 kwam was het probleem nagenoeg verholpen, hoewel ook die volgens voorschriften niet geslepen mag worden.
Ook de vorige motor uit mijn 88" S3 diesel is een van de slachtoffers geweest, vandaar dat er bij deze auto sinds 1985 een 5x gelagerde motor 2.25 in staat.
Dennis B
De 3x gelagerde 2.25 D is beroemd geworden door regelmatig brekende krukassen, vandaar dat Land Rover slijpen van de krukas niet toestaat. Toen de 5x gelagerde 2.25 kwam was het probleem nagenoeg verholpen, hoewel ook die volgens voorschriften niet geslepen mag worden.
Ook de vorige motor uit mijn 88" S3 diesel is een van de slachtoffers geweest, vandaar dat er bij deze auto sinds 1985 een 5x gelagerde motor 2.25 in staat.
Dennis B
-
ex-fietser
Re: onderblok benzine/diesel 2.25
Gewoon hierom:
<img src="[www.mijnalbum.nl];
Arnold.
<img src="[www.mijnalbum.nl];
Arnold.
-
D&G
Re: onderblok benzine/diesel 2.25
Arnold,
Als jij de maatstaf ben voor kapotte en afgebroken dingen kunnen we allemaal wel onze Land Rover verkopen
Gerard
Als jij de maatstaf ben voor kapotte en afgebroken dingen kunnen we allemaal wel onze Land Rover verkopen
Gerard
-
88Cees
Re: onderblok benzine/diesel 2.25
Is het niet zo dat benzine krukassen gegoten en diesel krukassen gesmeedt zijn?
Dus wel het onderblok wisselen maar niet de krukas.
Gr Ceesdiemeteendieselonderblok+krukasinzijnbenzinelarorondrijdt
Dus wel het onderblok wisselen maar niet de krukas.
Gr Ceesdiemeteendieselonderblok+krukasinzijnbenzinelarorondrijdt
-
ex-fietser
Re: onderblok benzine/diesel 2.25
De eerste krukassen waren gegoten. Maar door problemen zijn ze vrij snel overgestapt op gesmede versies. Gegoten krukassen zijn nu betrekkelijk zeldzaam. Diesel en benzine krukassen zijn verder gelijk.
Arnold.
Arnold.
-
ex-fietser
Re: onderblok benzine/diesel 2.25
Kan ik het helpen dat ik een niet zo heel goede laro kocht voor te veel geld.
Heb ik geloof ik vaker gehoord.
Arnold.
Heb ik geloof ik vaker gehoord.
Arnold.
-
Huub Pennings
Re: onderblok benzine/diesel 2.25
Naslijpen van de krukas kan soms wel, soms niet, afhankelijk van,belasting, fabrikage methode, dikte van de geharde laag en materiaalkeuze van de as.
Voor de geinteresseerde,
Crankshaft Tech
Cast vs. Forged vs. Billet
Manufacturing techniques play a substantial role in the ultimate strength of a crankshaft. Casting and forging are the two most common manufacturing methods, and each has benefits and drawbacks. Cast cranks start life as liquid iron or steel, and are poured into a mold. This allows the raw casting to closely resemble its final shape, which reduces the amount of final machining. Combined with the fact that the equipment necessary to produce castings is relatively inexpensive, it's obvious why cast cranks are the predominant choice of the OEs. Aftermarket cast cranks offer significant improvements in strength, and can be had for as little as $200.
In contrast, the forging process requires heavy duty presses and more extensive final machining operations. Forging involves heating up a cylindrical slug of metal to a molten state, then pounding it into shape with presses and dies. It is this compressing action that creates an inherently stronger end product over a casting. "In a casting, the grain structure looks like beach sand," explains Tom Lieb of Scat. "In a forging, the force of the press compresses the grain together so it becomes one uniform grain flow. As the space between the molecules is compressed, each molecule is forced to 'hold hands' with the next molecule." Compared to a cast crank, the drawback of a forging is cost. The heavy duty hydraulic presses used in the forging process are extremely expensive, which leads to a costlier product. Expect prices to start at $500 for more popular engine makes.
Think of billet cranks as an offshoot of forged cranks. Like a forging, a billet crank starts out as a large cylindrical ingot of steel. However, while a forged crank is compressed during the forging process, the steel ingot used in a billet crank is already forged, albeit not quite as compressed as in a forged crank. The key difference between the two is how the ingots are shaped into cranks. "The metal bar used to make a forged 4.000-inch SBC crank measures about 4.75-inches in diameter and the crank's total width ends up being 6.75 inches when the forging process is complete," Lieb says. "The metal bar used in a billet crank of the same stroke is much larger, at roughly 8 inches, weighing 350 lbs compared to 150 lbs in a forged crank. Instead of twisting and pounding the metal in different directions as with a forging, a billet crank is made by whittling away the metal so the grain structure runs parallel throughout the entire length of the crank." Due to the increase in materials and labor over a forged crank, billet cranks are the most expensive of them all. Custom one-offs carry price tags in the neighborhood of $3,000. As for whether a billet crank is stronger than a forging, because there is no consensus in the industry, the various manufacturers will duke it out later in the story and we'll let you make the call.
Strength
Before delving into the specifics of metallurgy, there are strength characteristics universal to all castings and forgings worth nothing. In a lab, metal is tested for strength by pulling a one-inch round bar apart until it breaks. Tensile strength relates to the amount of force required to start stretching the bar. Yield strength describes the force needed to continue to pull the bar apart. The difference between tensile and yield strength between castings and forgings is significant. "With a casting, you only have to reduce the cross section of the bar by six percent before it breaks," Lieb explains. "With a forging, the cross section can be reduced by 20 percent before the bar breaks."
Metallurgy
As an alloy consisting primarily of iron, the small quantities of metal added to that iron are what determines the differences in strength among various grades of steel. A set of standards established by the American Society for Metals (ASM) determines the content of metal grades in addition to their nomenclature. "For entry-level cast cranks, increasing the carbon content in proportion to iron improves strength," says Alan Davis of Eagle Specialty Products. The most basic cranks are cast iron, which typically have a tensile strength of about 70,000 to 80,000 psi. Slightly increasing the carbon content of iron produces nodular iron, resulting in a tensile strength of roughly 95,000 psi. Both materials are used extensively by the OEs, but won't quite cut it for more serious aftermarket stroker crank applications. Commonly used in entry-level aftermarket crankshafts, cast steel has greater carbon content than nodular iron, and a tensile strength of about 105,000 psi. "In a typical small-block, a cast-steel crank can easily handle 500 hp. Although we've seen them pushed to much high power levels, we generally recommend a forged crank at anything above that power level."
Moving up the totem pole, factory forged cranks are made from steel alloys such as 1010, 1045, and 1053. While their tensile strengths are similar to that of a cast-steel crank, their elongation rating is more than three times greater. This translates to a far less brittle material. Nonetheless, they're a far cry from the ultimate durability of an aftermarket steel crank. "Factory forged steel cranks have high carbon content, but they lack the chrome and nickel content of the premium alloys used in aftermarket cranks," Scat's Lieb explains. "In these types of alloys, chrome and nickel are what make them stronger. There are other materials involved, but they are used to make sure everything mixes together properly and don't impact strength."
The most basic aftermarket-grade steel is 5140, which boasts a tensile strength of about 115,000 psi. This material used to be-and to some extent still is-an excellent choice for racers on a budget, but is less common than in years past due to the increasing affordability of premium alloy cranks. These include 4130 and 4340 forgings, which have tensile strength ratings of approximately 125,000 psi and 145,000 psi, respectively. Engine builders and crankshaft manufacturers universally accept 4340 as the ideal alloy for strength and durability. Because aftermarket 4340 cranks start between $500 and $600 for common engine platforms, the lesser grades of steel are dwindling in popularity. "We have plenty of customers pushing 1,500 hp through a 4340 forged steel crank," Eagle's Davis says.
Twist vs. Non-Twist Forging
Forged cranks are pressed into place on a die, but there are two different techniques used to accomplish this. The simplest method is to forge one of the crank throws at a time in a flat forging die. The crank is then twisted, and the die forges the next throw. Conversely, in a non-twist forging, all four throws are forged simultaneously, which requires a more complex die. Non-twist forgings are said to reduce internal crankshaft stresses during the manufacturing process, but not everyone's buying it. "If all variables are controlled properly during the forging process, there's little if any difference between twist and non-twist forgings," opines James Humphries of Lunati. "Most aftermarket cranks these days are non-twist forged anyways, so there's no sense in arguing either way. It's more of a marketing thing."
Heat Treating
In addition to materials, and casting or forging techniques, heat treating can greatly impact the strength of a crankshaft. Nitriding is the most prevalent method of heat treating used in aftermarket cranks, where ionized nitrogen is vacuum deposited onto the crank surface in an oven. By penetrating .010 to .012 inch into the metal surface and changing the microstructure of the steel, surface hardness is doubled from 30 to 60 on the Rockwell scale, and fatigue life is increased by 25 percent. The OEs usually favor induction hardening over nitriding, which results in deeper penetration into the metal surface (.050 to .060 inch). This process uses a magnetic field to heat the surface. "There are pros and cons of both methods, but nitriding is most common in the aftermarket," explains Humphries. "Induction hardening is more localized, whereas nitriding treats the entire crank at once. However, induction hardening penetrates more deeply, which enables turning down the journals once or twice during rebuilds before having to heat treat the crank again."
Knife-Edging
Does knife-edging a crank's counterweights really reduce windage and increase power? Not everyone thinks so. "Knife-edging was developed more for ease of balancing than power, and won't do much on a street motor," explains Callies' Dwayne Boes. "Like a snow plow, oil hits a knife edge and gets thrown all over the place when it should ideally land on the nose and flow off to the side. A bull-nose rounded leading edge is the most efficient, like the bow of a ship."
Overlap
Just as the term implies, journal overlap is simply how much of a crank's main and rod journal diameters overlap each other. As stroke is increased, moving the rod journals farther away from the main journals reduces overlap and compromises strength and durability. Likewise, smaller rod and main journals reduce bearing speed and friction, but also reduce overlap. "The reason why GM increased the size of the mains to 2.65 inches on a 400 SBC compared to 2.45 inches on a 350 was to maintain journal overlap with the longer 3.75-inch stroke," explains Judson Massingill of the School of Automotive Machinists.
Billet Or Forged?
Although we've clearly outlined the hierarchy of the various grades of castings and forgings, we haven't declared whether billet cranks or their forged counterparts offer the ultimate in strength. Quite frankly, we don't know the answer, and we won't even attempt to make an educated guess. There are compelling arguments for each from a host of credible sources.
Voor de geinteresseerde,
Crankshaft Tech
Cast vs. Forged vs. Billet
Manufacturing techniques play a substantial role in the ultimate strength of a crankshaft. Casting and forging are the two most common manufacturing methods, and each has benefits and drawbacks. Cast cranks start life as liquid iron or steel, and are poured into a mold. This allows the raw casting to closely resemble its final shape, which reduces the amount of final machining. Combined with the fact that the equipment necessary to produce castings is relatively inexpensive, it's obvious why cast cranks are the predominant choice of the OEs. Aftermarket cast cranks offer significant improvements in strength, and can be had for as little as $200.
In contrast, the forging process requires heavy duty presses and more extensive final machining operations. Forging involves heating up a cylindrical slug of metal to a molten state, then pounding it into shape with presses and dies. It is this compressing action that creates an inherently stronger end product over a casting. "In a casting, the grain structure looks like beach sand," explains Tom Lieb of Scat. "In a forging, the force of the press compresses the grain together so it becomes one uniform grain flow. As the space between the molecules is compressed, each molecule is forced to 'hold hands' with the next molecule." Compared to a cast crank, the drawback of a forging is cost. The heavy duty hydraulic presses used in the forging process are extremely expensive, which leads to a costlier product. Expect prices to start at $500 for more popular engine makes.
Think of billet cranks as an offshoot of forged cranks. Like a forging, a billet crank starts out as a large cylindrical ingot of steel. However, while a forged crank is compressed during the forging process, the steel ingot used in a billet crank is already forged, albeit not quite as compressed as in a forged crank. The key difference between the two is how the ingots are shaped into cranks. "The metal bar used to make a forged 4.000-inch SBC crank measures about 4.75-inches in diameter and the crank's total width ends up being 6.75 inches when the forging process is complete," Lieb says. "The metal bar used in a billet crank of the same stroke is much larger, at roughly 8 inches, weighing 350 lbs compared to 150 lbs in a forged crank. Instead of twisting and pounding the metal in different directions as with a forging, a billet crank is made by whittling away the metal so the grain structure runs parallel throughout the entire length of the crank." Due to the increase in materials and labor over a forged crank, billet cranks are the most expensive of them all. Custom one-offs carry price tags in the neighborhood of $3,000. As for whether a billet crank is stronger than a forging, because there is no consensus in the industry, the various manufacturers will duke it out later in the story and we'll let you make the call.
Strength
Before delving into the specifics of metallurgy, there are strength characteristics universal to all castings and forgings worth nothing. In a lab, metal is tested for strength by pulling a one-inch round bar apart until it breaks. Tensile strength relates to the amount of force required to start stretching the bar. Yield strength describes the force needed to continue to pull the bar apart. The difference between tensile and yield strength between castings and forgings is significant. "With a casting, you only have to reduce the cross section of the bar by six percent before it breaks," Lieb explains. "With a forging, the cross section can be reduced by 20 percent before the bar breaks."
Metallurgy
As an alloy consisting primarily of iron, the small quantities of metal added to that iron are what determines the differences in strength among various grades of steel. A set of standards established by the American Society for Metals (ASM) determines the content of metal grades in addition to their nomenclature. "For entry-level cast cranks, increasing the carbon content in proportion to iron improves strength," says Alan Davis of Eagle Specialty Products. The most basic cranks are cast iron, which typically have a tensile strength of about 70,000 to 80,000 psi. Slightly increasing the carbon content of iron produces nodular iron, resulting in a tensile strength of roughly 95,000 psi. Both materials are used extensively by the OEs, but won't quite cut it for more serious aftermarket stroker crank applications. Commonly used in entry-level aftermarket crankshafts, cast steel has greater carbon content than nodular iron, and a tensile strength of about 105,000 psi. "In a typical small-block, a cast-steel crank can easily handle 500 hp. Although we've seen them pushed to much high power levels, we generally recommend a forged crank at anything above that power level."
Moving up the totem pole, factory forged cranks are made from steel alloys such as 1010, 1045, and 1053. While their tensile strengths are similar to that of a cast-steel crank, their elongation rating is more than three times greater. This translates to a far less brittle material. Nonetheless, they're a far cry from the ultimate durability of an aftermarket steel crank. "Factory forged steel cranks have high carbon content, but they lack the chrome and nickel content of the premium alloys used in aftermarket cranks," Scat's Lieb explains. "In these types of alloys, chrome and nickel are what make them stronger. There are other materials involved, but they are used to make sure everything mixes together properly and don't impact strength."
The most basic aftermarket-grade steel is 5140, which boasts a tensile strength of about 115,000 psi. This material used to be-and to some extent still is-an excellent choice for racers on a budget, but is less common than in years past due to the increasing affordability of premium alloy cranks. These include 4130 and 4340 forgings, which have tensile strength ratings of approximately 125,000 psi and 145,000 psi, respectively. Engine builders and crankshaft manufacturers universally accept 4340 as the ideal alloy for strength and durability. Because aftermarket 4340 cranks start between $500 and $600 for common engine platforms, the lesser grades of steel are dwindling in popularity. "We have plenty of customers pushing 1,500 hp through a 4340 forged steel crank," Eagle's Davis says.
Twist vs. Non-Twist Forging
Forged cranks are pressed into place on a die, but there are two different techniques used to accomplish this. The simplest method is to forge one of the crank throws at a time in a flat forging die. The crank is then twisted, and the die forges the next throw. Conversely, in a non-twist forging, all four throws are forged simultaneously, which requires a more complex die. Non-twist forgings are said to reduce internal crankshaft stresses during the manufacturing process, but not everyone's buying it. "If all variables are controlled properly during the forging process, there's little if any difference between twist and non-twist forgings," opines James Humphries of Lunati. "Most aftermarket cranks these days are non-twist forged anyways, so there's no sense in arguing either way. It's more of a marketing thing."
Heat Treating
In addition to materials, and casting or forging techniques, heat treating can greatly impact the strength of a crankshaft. Nitriding is the most prevalent method of heat treating used in aftermarket cranks, where ionized nitrogen is vacuum deposited onto the crank surface in an oven. By penetrating .010 to .012 inch into the metal surface and changing the microstructure of the steel, surface hardness is doubled from 30 to 60 on the Rockwell scale, and fatigue life is increased by 25 percent. The OEs usually favor induction hardening over nitriding, which results in deeper penetration into the metal surface (.050 to .060 inch). This process uses a magnetic field to heat the surface. "There are pros and cons of both methods, but nitriding is most common in the aftermarket," explains Humphries. "Induction hardening is more localized, whereas nitriding treats the entire crank at once. However, induction hardening penetrates more deeply, which enables turning down the journals once or twice during rebuilds before having to heat treat the crank again."
Knife-Edging
Does knife-edging a crank's counterweights really reduce windage and increase power? Not everyone thinks so. "Knife-edging was developed more for ease of balancing than power, and won't do much on a street motor," explains Callies' Dwayne Boes. "Like a snow plow, oil hits a knife edge and gets thrown all over the place when it should ideally land on the nose and flow off to the side. A bull-nose rounded leading edge is the most efficient, like the bow of a ship."
Overlap
Just as the term implies, journal overlap is simply how much of a crank's main and rod journal diameters overlap each other. As stroke is increased, moving the rod journals farther away from the main journals reduces overlap and compromises strength and durability. Likewise, smaller rod and main journals reduce bearing speed and friction, but also reduce overlap. "The reason why GM increased the size of the mains to 2.65 inches on a 400 SBC compared to 2.45 inches on a 350 was to maintain journal overlap with the longer 3.75-inch stroke," explains Judson Massingill of the School of Automotive Machinists.
Billet Or Forged?
Although we've clearly outlined the hierarchy of the various grades of castings and forgings, we haven't declared whether billet cranks or their forged counterparts offer the ultimate in strength. Quite frankly, we don't know the answer, and we won't even attempt to make an educated guess. There are compelling arguments for each from a host of credible sources.
-
Pepé le Pew&Porky Pig
Re: onderblok benzine/diesel 2.25
Ik denk dat het ook wijs is om dat bij de RDW te registreren.
Een 2.25 benzine onderblok heeft een andere motorcode als een 2.25 diesel.
Als je nu van een 2.25 benzine een diesel maakt is het volgens het motornummer nog steeds een benzine blok.
Groet Eric.
--> mod_embed_images_loadimage('7107f22f8026fab2bbe804d61c71b64e', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,url=http%3A%2F%2Fwww.mijnalbum.nl%2FMiniFoto%3DPDZCVM86', 'http://www.mijnalbum.nl/MiniFoto=PDZCVM86', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,check_scaling=1,url=http%3A%2F%2Fwww.mijnalbum.nl%2FMiniFoto%3DPDZCVM86', '', 6043995, 600, 600, 'Loading image ...', false);
--> mod_embed_images_loadimage('4b838a5de505b1383b767efea3593582', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,url=http%3A%2F%2Fwww.mijnalbum.nl%2FFoto%3DJR4NBGBE', 'http://www.mijnalbum.nl/Foto=JR4NBGBE', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,check_scaling=1,url=http%3A%2F%2Fwww.mijnalbum.nl%2FFoto%3DJR4NBGBE', '', 6043995, 600, 600, 'Loading image ...', false);
MiniFoto-C37WISQS.jpg --> mod_embed_images_loadimage('bb67388b2361bfa793596b4b700c41fe', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,url=http%3A%2F%2Fwww.mijnalbum.nl%2FMiniFoto-C37WISQS.jpg', 'http://www.mijnalbum.nl/MiniFoto-C37WISQS.jpg', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,check_scaling=1,url=http%3A%2F%2Fwww.mijnalbum.nl%2FMiniFoto-C37WISQS.jpg', '', 6043995, 600, 600, 'Loading image ...', false);
Foto-U3QEX83E.jpg --> mod_embed_images_loadimage('caf7a69d8e1ba6ba727fbd400611c06c', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,url=http%3A%2F%2Fwww.mijnalbum.nl%2FFoto-U3QEX83E.jpg', 'http://www.mijnalbum.nl/Foto-U3QEX83E.jpg', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,check_scaling=1,url=http%3A%2F%2Fwww.mijnalbum.nl%2FFoto-U3QEX83E.jpg', '', 6043995, 600, 600, 'Loading image ...', false);
Een 2.25 benzine onderblok heeft een andere motorcode als een 2.25 diesel.
Als je nu van een 2.25 benzine een diesel maakt is het volgens het motornummer nog steeds een benzine blok.
Groet Eric.
--> mod_embed_images_loadimage('7107f22f8026fab2bbe804d61c71b64e', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,url=http%3A%2F%2Fwww.mijnalbum.nl%2FMiniFoto%3DPDZCVM86', 'http://www.mijnalbum.nl/MiniFoto=PDZCVM86', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,check_scaling=1,url=http%3A%2F%2Fwww.mijnalbum.nl%2FMiniFoto%3DPDZCVM86', '', 6043995, 600, 600, 'Loading image ...', false);
--> mod_embed_images_loadimage('4b838a5de505b1383b767efea3593582', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,url=http%3A%2F%2Fwww.mijnalbum.nl%2FFoto%3DJR4NBGBE', 'http://www.mijnalbum.nl/Foto=JR4NBGBE', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,check_scaling=1,url=http%3A%2F%2Fwww.mijnalbum.nl%2FFoto%3DJR4NBGBE', '', 6043995, 600, 600, 'Loading image ...', false);
MiniFoto-C37WISQS.jpg --> mod_embed_images_loadimage('bb67388b2361bfa793596b4b700c41fe', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,url=http%3A%2F%2Fwww.mijnalbum.nl%2FMiniFoto-C37WISQS.jpg', 'http://www.mijnalbum.nl/MiniFoto-C37WISQS.jpg', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,check_scaling=1,url=http%3A%2F%2Fwww.mijnalbum.nl%2FMiniFoto-C37WISQS.jpg', '', 6043995, 600, 600, 'Loading image ...', false);
Foto-U3QEX83E.jpg --> mod_embed_images_loadimage('caf7a69d8e1ba6ba727fbd400611c06c', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,url=http%3A%2F%2Fwww.mijnalbum.nl%2FFoto-U3QEX83E.jpg', 'http://www.mijnalbum.nl/Foto-U3QEX83E.jpg', 'http://landrover.startpagina.nl/prikbord/addon.php?1162,module=embed_images,check_scaling=1,url=http%3A%2F%2Fwww.mijnalbum.nl%2FFoto-U3QEX83E.jpg', '', 6043995, 600, 600, 'Loading image ...', false);
-
a.wilbie
Re: onderblok benzine/diesel 2.25
arnold,
het is niet wat je heb betaald, je kan niet overal in kijken qua motor en chassis...
het is niet hoe de laro er uitziet, plaatwerk is te doen.
het is wat je er van maakt, en met wat liefde en aandacht kan je van de grootste wrak een mooie wagen maken.
kom anders eens wat foto's kijken van de restauratie van mijn groen witte.
cheers arjan
het is niet wat je heb betaald, je kan niet overal in kijken qua motor en chassis...
het is niet hoe de laro er uitziet, plaatwerk is te doen.
het is wat je er van maakt, en met wat liefde en aandacht kan je van de grootste wrak een mooie wagen maken.
kom anders eens wat foto's kijken van de restauratie van mijn groen witte.
cheers arjan